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The influence of spatial structure on the equilibrium properties of a sexual population model defined on
networks is studied numerically. Using a small-world-like topology of the networks as an investigative tool, the
contributions to the fitness of assortative mating and of global mutant spread properties are considered. Simple
measures of nearest-neighbor correlations and speed of spread of mutants through the system have been used
to confirm that both of these dynamics are important contributory factors to the fitness. It is found that
assortative mating increases the fitness of populations. Quick global spread of favorable mutations is shown to
be a key factor increasing the equilibrium fitness of populations.
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Spatial structure changes the fitness of populations in evo-
lutionary biology and the dynamics of alleles spreading
through them �1–7�. It has also been shown to change the
dynamics of cooperative games �8–10�. Competition in the
wild is mostly local and spatial �11�. Nevertheless, most
population genetic models are nonspatial �12–15�. It is also
true that, while it is increasingly recognized that space is an
important factor in evolutionary studies and networks may
be a useful way of studying this theoretically �16–19�, an
understanding of the role of space in the dynamics is still
rudimentary.

Assortative mating, by which individuals mate with simi-
lar individuals, is also known to have an important effect on
population fitness �20�. This may be considered to be a result
of selection �21�, it may be caused by the environment �22�,
or breeding pairs may even be sorted by age �23�.

There are therefore two known, important effects of spa-
tial structure: that which has an impact on the mating of
individuals and that which has consequences for the spread
of genes through offspring. In standard approaches, these
two types of networks are not generally distinguished. In this
paper, we allow for the mating and offspring-placement net-
works to be distinguished in order to mimic any possible
structural effects and examine the effects of possibly differ-
ent time scales �and thus different networks� for mating and
offspring-placement processes.

Concerning the spatial structure of networks, there are
three generic models: �i� fully connected network �each node
is connected to every other node�; �ii� random graph �nodes
in �i� are connected with a certain probability�; �iii� lattice
model �e.g., nearest-neighbor nodes are connected�. How-
ever, none of these limiting cases would seem to describe the
inherent spatial structures underlying real biological popula-
tions. The actual underlying networks of biological mating
and offspring dispersal are unknown. Therefore, an ap-
proach, in which one can controllably vary the network con-
nectivity, e.g., by imposing long-range connections onto
short-range structure, would be useful to investigate structure
effects on population fitness.

Rewiring the links between nodes typical of the much-
studied small-world-type networks �24–31� can mimic, e.g.,
migrations of individuals in spatial populations and allows
the topology of the network to be changed continuously from

that of the lattice to that of the random graph. Here, small-
world-type networks �for both mating and offspring place-
ment� are used as an investigative tool to examine an evolu-
tionary system and to understand what factors might be
important in determining the fitness of populations defined
on a wider range of networks. By varying the structure of the
offspring-placement and mate-choice networks indepen-
dently, we are able to investigate the relative importance of
spatial structure in the two and their interaction. By varying
the correlation between the two networks, we have been able
to vary the amount of assortative mating, without affecting
offspring dispersal, across a range of spatial structures.

In this paper, we demonstrate that: �i� the impact of topol-
ogy on global mutant spread through the population is im-
portant and when the time of mutant spread is reduced, the
fitness is increased; �ii� assortative mating caused by local
spatial structure also has a significant impact on the fitness.
Below, we modify a model which has already been investi-
gated for spatial lattices and fully connected graphs �4,32� in
regard to structural effects. In this paper, the model is defined
on a pair of either independent or related small-world-like
networks: one which defines possible sexual partners and
one which defines possible offspring placement. The use of
the small-world topology allows the concentration of random
connections in the system to be varied continuously and thus
the topology of the system can be changed smoothly from a
regular lattice to a random graph. Because we distinguish
between the network from which sexual partners are selected
and the network on which offspring are placed, and allow the
two networks to vary in either a correlated or uncorrelated
way, the level of assortative mating between sexual partners
can be varied continuously along with, and separate from,
the speed with which new mutants can spread through the
population by birth. As these two effects happen in different
ranges in the relevant parameter space, it is possible to ob-
serve directly their contributions to the fitness.

We have modified the “evolutionary-graph theory” model
�17� in this paper. Each vertex i of a graph with N nodes
represents an individual. The individuals have fitness ri. On
each turn �time step�, an individual on a node i is selected for
reproduction, with a probability, Pi, proportional to its fit-
ness, ri, i.e., Pi=ri /�i

Nri. A clone of the selected individual is
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placed onto one of the nodes, j, connected to it by the net-
work. As all of the networks we consider have connectivity
of four and equally weighted vertices, when an individual is
selected for reproduction it will occupy one of the nodes
connected to it by the network with equal probability of be-
ing placed onto any of the connecting nodes. The individual
that previously occupied node j is replaced by the offspring,
thus conserving the population size. This process is then re-
peated.

We extended the evolutionary-graph model in two ways
to make our investigation of mating and offspring spread
possible. The first way in which we extended it was to endow
each individual with a set of genes �rather than a single num-
ber fitness� which may be affected by mutations �4,32�. This
allows mating rules to be defined. The fitness of each indi-
vidual, i, is determined by a set of G genes �genome� char-
acterized by quality factors, qgi �initially taken to be unity�,
so that the fitness is ri=�g

Gqgi�0 �if ri becomes negative in
the process of evaluation, then it is set to zero and there is no
upper bound on ri�. The subscript g cycles over the genes in
an individual and the subscript i over individuals in the
population.

Each time that an offspring is produced, it is subject to
possible mutations. Mutations affect quality factors. At the
time of reproduction, each quality factor will independently
be mutated with a probability � �therefore, � is a per-gene
mutation rate�. The quality factor will increase by �0 with a
probability p �an advantageous mutation�. The quality factor
will decrease by �0 with a probability 1− p �a deleterious
mutation�. This can formally be described by stochastic
changes in quality factors, qgi→qgi+�, where � is a random
variable characterized by the following probability density,
����= �1−������+��p���+�0�+ �1− p����−�0��. This
process is then repeated for each of the G genes of the ge-
nome.

The model thus modified has already been investigated.
The population evolves to an equilibrium fitness if p�0.5
�32�, caused by mutation-selection balance �4,33�, propor-
tional to �0 provided that the initial dynamics do not lead to
extinction �in which all individuals’ fitness reach zero�. The
presence of an equilibrium is due to the fact that deleterious
mutations outnumber advantageous mutations. As the popu-
lation fitness increases, the relative effect of each new advan-
tageous mutation is proportionally smaller. Therefore, the ac-
cumulation of negative mutations balances the spread of new
advantageous mutations.

The model allows two ways of reproduction: asexual
and sexual. In the asexual case, the offspring ge-
nome �q1i , . . . ,qGi� is a clone of its parent. For example,
the following sequence, �11,7 ,3 ,12,7�→ �11,7 ,3 ,12,7�
→ �12,7 ,2 ,12,7�, describes the reproduction of an indi-
vidual with initial fitness r=40 and G=5 genes. Its offspring
is subject to two mutations �of magnitude �0=1�: an advan-
tageous mutation in g=1 and a deleterious mutation in g=3.
The asexual way of reproduction for this model defined on a
fully connected graph was first studied in Ref. �34�.

In the sexual case, when an individual is chosen for re-
production, it selects a partner at random from the nodes
connected to it on the graph, with a probability proportional
to potential mates’ fitness, and the offspring is produced by a

Mendelian shuffling of the genes. For example, the following
sequence, �11,7 ,3 ,12,7�+ �12,5 ,4 ,11,9�→ �11,7 ,4 ,12,9�
→ �11,6 ,4 ,12,8�, corresponds to sexual reproduction and
mutation. An individual with fitness r=40 was selected for
reproduction. From among possible mates connected to it by
the partner-selection network, it selected a partner which had
fitness r=41. An offspring was produced, each quality factor
qg was chosen at random from its two parents �so it received
g=1,2 ,4 from one parent and g=3,5 from the other�. It was
then subject to mutations in g=2,5, both of them deleterious
��0=1�. It has a resulting fitness r=41. The above criteria for
sexual reproduction define hermaphrodite haploids.

The networks from which partners are selected and on
which offspring are placed are defined as follows. A square
lattice with periodic boundary conditions is used as a base
network for the small-world-like networks and constructed in
the following manner �see Fig. 1�. With probability pc, each
link on the lattice is disconnected. The nodes with missing
links are then connected randomly, allowing connections to
reform, but avoiding double links. The value of pc can be
varied in the range 0	 pc	1, with pc=0 corresponding to
the square lattice and pc=1 to the 4-regular graph �4 is the
node coordination number�. Unlike the Watts-Strogatz small-
world network �24�, the network used here maintains the
constant connectivity of the nodes. The system is described
by a symmetric stochastic matrix, ensuring that the probabil-
ity of a mutant fixing in the system is the same in all of the
networks studied �17�.

In an asexual model, the network is used only for placing
an offspring. In a sexual model, the network is used both
for partner selection and for placing offspring. These two
networks can be either identical or different if pc
0 �see
Fig. 1�. If pc is the same in both networks and the two net-
works are different, then topological correlations are gradu-
ally destroyed as pc increases. When pc is low, the two net-
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FIG. 1. �Color online� In a sexual population, two networks
define the interactions between individuals in the population. The
partner-selection and offspring-placement networks are shown by
dashed and solid lines, respectively. A parent is selected according
to its fitness �solid shading�. A second parent is chosen �squared
shading� from the nearest neighbors in the partner-selection net-
work and the offspring is placed onto a node �striped shading� con-
nected to the first parent by the offspring-placement network. In �a�,
the two networks are the same. In �b�, the partner-selection network
and offspring-placement networks are formed in the same way, with
the same value of pc, but independently. For small values of pc,
both networks in �b� are topologically correlated due to a significant
proportion of nonbroken square-lattice connections.
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works are highly correlated because they are both similar to
square lattices. However, when pc is high, the two networks
approach independently created 4-regular graphs. Alterna-
tively, if the partner-selection and offspring-placement net-
works are the same, then correlations between the two net-
works are high whatever value pc takes. This is important
because reducing the amount of correlation between the two
networks must also reduce the amount of assortative mating.
Individuals will select partners who are less likely to be
closely related to them. By reducing the amount of assorta-
tive mating in this way, without affecting the spread of mu-
tations through the population by other means, we have been
able to separate the fitness effects of assortative mating.

These correlations significantly influence the equilibrium
fitness of sexual populations. Figure 2 shows how the fitness
of populations changes with pc in sexual populations using
both the same networks and different, overlaid networks �cf.
the curves plotted with triangles and squares� and also in an
asexual population for comparison �marked by circles�. A
small amount of global reconnection corresponding to an
increasing value of pc quickly leads to increased fitness in all
three networks. The steep increase in fitness at very small
pc��1� is consistent with a view that long-range correlations
cause a much quicker global spread of advantageous mu-
tants, an effect that typifies small-world networks �24�. This
benefit due to the shortcuts in the network quickly saturates
at pc�0.2. Thereafter, in the sexual system where the two
networks are varied independently, there is a slow decrease
in fitness with pc for pc�0.2 �see triangles in Fig. 2�. This
decrease can be qualitatively understood as follows. As the
reconnection level increases further, the local structure is
broken up when the networks are independent. The genetic
relatedness of sexual partners would be expected to decrease,

reducing the degree of assortative mating and thus leading to
a gradual decrease in fitness. This effect is not observed in
the system where the partner-selection and mate-placement
networks are identical �see the curve labeled by squares in
Fig. 2�.

We now investigate separately the rapid increase in fitness
on increasing pc from low values and the diverging fitness of
the sexual networks for higher pc. We demonstrate that the
first behavior is consistent with an increase in rapidity of
spread of new mutations due to a reduction in path length.
The diverging fitness does indeed correspond to a decrease in
assortative mating when the partner-selection and offspring-
selection networks are varied independently.

The Watts-Strogatz small-world network �24�, on which
our network is based, is known to cross over from a large
path length �minimum number of links between two nodes�
to a short one at relatively low levels of rewiring. This might
lead to shorter times tf�N ,r , pc� for an advantageous muta-
tion to spread through the population. To study the speed of
spread alone, we use the evolutionary-graph theory model
�17� discussed above, in which a single mutant �of fitness r�
is placed in an otherwise homogenous population �fitness of
all other individuals is set to unity� and further mutation is
suppressed. The population used is asexual such that dis-
persal via offspring placement alone contributes to spread. In
this paradigm, fixation occurs when the single mutation
present in the system has occupied all nodes.

The anticipated behavior is indeed demonstrated in Fig. 3
which shows how the fixation time for mutants of fitness r in
the system depends on the reconnection probability. The res-
caled fixation time, Tf = �tf�N ,r , pc�− tf�N ,r ,1�� / �tf�N ,r ,0�
− tf�N ,r ,1��, plotted in Fig. 3 vs pc, allows all the curves for
different r to be shown on the same scale. These plots show
that the mutant spread time rapidly decreases on increasing
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FIG. 2. �Color online� Relationship between mean equilibrium
fitness, N−1�i

Nri, and reconnection probability, pc, in the small-
world-like network for a sexual model when the parent and off-
spring networks are the same �squares� or different �triangles�. The
fitness of the asexual model �with only one network for offspring� is
shown for comparison �circles�. The parameters used in the simu-
lation are G=10, �=0.13, p=0.25, �0=1, and N=2500. Data were
averaged over 400 realizations of the system after equilibrium was
reached. The errors are smaller than the symbols used. Lines are
guides to the eyes.
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FIG. 3. �Color online� Variation of rescaled time to fixation, Tf,
for a mutant on a network with link-reconnection probability pc

for an evolutionary-graph model with varying r, as marked by dif-
ferent symbols �N=2500�. Where error bars are not shown, the
errors are smaller than the symbols used. Lines are guides to the
eyes only. Each point has been obtained by averaging over at least
850 fixation events. Inset shows the ratio between the fixation time
�before rescaling� in the square lattice �pc=0� and in the 4-regular
graph �pc=1� vs the mutant fitness.
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pc from zero. This is consistent with our explanation for the
sudden rise in fitness for small pc in Fig. 2 being caused by
the quicker spread of advantageous mutants. The inset in Fig.
3 shows the ratio tf�N ,r ,0� / tf�N ,r ,1� as a function of the
mutant fitness r, demonstrating that the behavior is qualita-
tively similar for a wide range of values of r.

For the square lattice, it has been shown �4� that the fixa-
tion time scales with population size as tf 
N2 and for the
fully connected system, the scaling is tf 
N ln N. Bearing in
mind the similarity in topology between fully connected
�complete� and Z-regular graphs, it may be anticipated that
the same scaling will hold for both types of networks. In-
deed, N ln N scaling has been confirmed numerically for the
Z-regular graph, as demonstrated in the inset in Fig. 4 �the
rescaled fixation time for pc=1 does not depend on N�. This
graph shows that the scaling law found in the fully connected
graph holds even for small pc ��0.05� for a wide range of
system sizes. For even smaller values of pc�0.05, a change
to the scaling regime found for the square lattice �tf 
N2 for
pc=0� eventually occurs.

In order to investigate the degree of assortative mating,
we define a “genetic distance,” Dij, between two individuals
in terms of their gene-quality factors as Dij = �G−1�g=1

g=G�qig
−qjg�2�1/2, where the sum is taken over all the genes for
individuals on nodes i and j �below, i and j refer to nearest
neighbors only�. Such a definition of the genetic distance
implies that the larger this distance, the greater the level of
genetic difference between the two individuals. If the indi-
viduals connected on the partner-selection network have a
greater distance, then there is a smaller degree of assortative
mating. The average genetic distance between nearest neigh-
bors depends on the probability of reconnection �see Fig. 5�.
It can be seen from Fig. 5 that, when there is a single net-
work, with partners being chosen across the same link as
offspring are placed, the distance grows in line with the fit-
ness �cf. the line marked by the circles in Fig. 5 with the
lines marked by the squares in Fig. 2�. When there are two

different overlaid networks for placing offspring and select-
ing partners, thereby breaking up the correlations, the situa-
tion changes. For the offspring network, just a slight increase
in the genetic distance is observed �cf. the curves marked by
squares and circles in Fig. 5�. However, the genetic distance
between sexual partners increases significantly and steadily
as pc is increased �cf. the curve marked by triangles with the
curves marked by the squares and circles�. This demon-
strates, as expected, that the degree of assortative mating
decreases with increasing pc over the scale that the fitness
decrease is seen in Fig. 2. It may be argued that, in real
biological systems, a decrease in assortative mating would be
a positive thing, leading to less inbreeding. This effect is not
considered in this simple model and, as with real systems,
the situation is likely to be rather complicated. However, the
method of analysis presented above highlights the impor-
tance of assortative mating for the model considered and
gives a means of quantifying the effect. Ignoring spatial ef-
fects would lead to an important contributor to fitness—
namely, assortative mating—being missed.

To conclude, we have presented a technique to examine
the ways in which the fitness of sexual and asexual popula-
tions is affected by spatial structure in the population. It is
found that the presence of space-induced assortative mating
leads to fitness benefits. It has also been shown that fitness is
implicitly correlated with the speed of spread of mutants
through the system—a faster global spread increases the fit-
ness. Technically, we have investigated the above effects by
using paired small-world-like networks for different pro-
cesses in the model. This method is rather general and could
be used and developed in other areas where spatial structure
is important.

C.J.P. would like to thank the EPSRC-GB for financial
support. We are grateful to the Cambridge University Condor
Grid for the provision of computational resources.
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